Dead-Rail Conversion of an MTH 2-8-8-8-2 Virginian Triplex

Introduction

This post describes my most difficult dead-rail conversion to date: an MTH O scale 2-8-8-8-2 Virginian Triplex (MTH product number 20-3101-1) that I purchased on eBay circa September 2019. Previously, I converted a Sunset 3rd Rail Allegheny with an MTH Proto-Sound 3.0 board to dead-rail, but the Triplex was my first complete dead-rail conversion of an MTH locomotive to 2-rail operation, which included lathe turning high-profile wheels to approximate an NMRA RP-25 flange profile (also see NMRA standard S-4.2) so that the locomotive would operate reliably on track meeting NMRA standard S-3.2.

Box details
Locomotive side view
Tender side view

The inside view of the tender below demonstrates a significant challenge: space is very tight with the Proto-Sound board and the large speaker consuming a large part of the tender’s internal volume where we need to install additional dead-rail components: DCC-compatible RF receiver; 14.8V LiPo battery; and switch, charging, and antenna wiring.

Inside view of the tender: Note the battery cradle, the space-consuming speaker, and the end-of-tender smoke unit.

The strategy starts to emerge:

  1. Replace the Proto-Sound 2.0 (PS2.0) board with a PS3.0 board that can operate in DCC mode.
  2. Remove the original rechargeable battery and its cradle and locate the 14.8V LiPo battery pack there.
  3. Remove the large speaker and replace it with a smaller 4-ohm speaker so that we can make room for the 14.8V LiPo battery pack and the Airwire CONVRTR-60X DCC-compatible RF receiver that operates in the 902-928 MHz ISM band on Airwire channels 0-16.
  4. Lathe down the high-rail wheel flanges to approximate an NMRA “RP-25” profile for 2-rail, dead-rail operation.

An advantage of this strategy is retaining almost all of the control the PS2.0/PS3.0 provides, including directional head/tail lamp, marker lights, cabin lights, flickering firebox, sound, and fan-driven smoke units.

Proto-Sound 3.0 Conversion

The first step of the dead-rail conversion was easy: replacing the Proto-Sound 2.0 board with a Proto-Sound 3.0 (PS3.0) board from Ray’s Electric Trainworks. As I have mentioned in other posts, working with Ray Manley is a great pleasure. I sent my PS2.0 board as a trade-in to Ray, and he took care of the rest, providing me with a fully-functional PS3.0 board, complete with DCC capability.

The heatsink for the PS3.0 board necessitated drilling and tapping a new mount hole with spacer, as shown in the figure below.

New Proto-Sound 3.0 heatsink mount with a spacer.

The following photos show the original electrical power inputs to the PS2.0 board and their modified connections for the replacement PS3.0 board.

Original power connections to the Proto-Sound 2.0 board.

As you can see below, the AC power from the center rail pick-up (hot) and the outside rails (ground) were disconnected – we will be getting our power from a 14.8V LiPo battery pack in the tender. In this case, there is no Constant Voltage Unit, so no Battery +(14.8V)/Battery -(Ground) connections are required.

Locomotive power connection modifications. There is no Constant Voltage Unit in this locomotive, so the B+/B- wires indicated above are NOT used.

The AC power connections in the tender are also disconnected, and the power inputs to the PS3.0 connect to the switched battery power. The Battery +(14.8V)/Battery -(Ground) connection on the wiring harness was NOT required.

Tender power connection modifications. There is no need for B+/B- power supply to the locomotive.
Power input modifications for the PS3.0 board. The DCC A/B input power comes from the connection to the Airwire CONVRTR-60X DCC-compatible RF receiver.
Final wiring connections

Locomotive Electrical Modifications

There were two aspects to the electrical modifications in the locomotive:

  1. Headlamp replacement
  2. Electrical power supply

The original headlamp was a power-hungry incandescent bulb. An LED with a polarity-independent plug from Evan Designs was used to eliminate the need to determine the polarity of the original headlamp wiring.

Headlamp LED replacement details

The power-related modifications consisted of removing the center-rail pick-ups, which is very easy on MTH locomotives and disconnecting any wiring to the center-rail pick-up (hot) and the outside rails (ground).

The original center-rail pick-ups. The “Center-Rail Pick-up” is disconnected.
The center-rail connection underneath the motor is disconnected

Battery Installation

Battery installation was very challenging since the only practical placement location was the original rechargeable battery and its cradle mounting beside the PS2.0 board. A special-order 2x2x1 14.8V, 2600mAh (38.48 Wh, 5A rate,  LxWxT: 133 mm x 40 mm x 25 mm) LiPo battery purchased from Tenergy.com provides the one cell-diameter thickness required to fit the battery pack between the PS3.0 board and the tender hull.

Original rechargeable battery and cradle location. The speaker volume control potentiometer was moved to accommodate the more extended 14.8 V LiPo replacement battery pack.
Volume control potentiometer. It was moved from its original location, and UV glue provides stress relief to prevent breakage of the very fine wires.
Final location of the volume control potentiometer. UV glue holds the potentiomenter in place.
Final battery location. Velcro attaches the battery to the side of the PS3.0 board.

Mechanical Modifications

In MTH steam locomotives, the wheel axles insert into a solid cast chassis frame, so the driver wheels must be pulled off the axle before machining the high profile wheels to approximate an RP-25 profile that is compatible with two-rail, dead-rail operation.

The driver wheels must be pulled off the axle for machining after removal of the side-rods. The axle and wheel are scribed to maintain proper “quartering.”
A wheel puller to separate the driver wheel from the axle.
Comparison of lathe-cut and unmodified high-profile wheels. The high-profile flanges were lathe-cut to approximate an RP-25 profile for 2-rail, dead-rail operation.

Tender Mechanical Modifications

The tender’s mechanical modifications involve adding a Kadee 740 coupler and accommodating additional dead-rail electronics.

Coupler Modifications

The original coupler pivot, rather than using a frame-fixed mounting, was used to mount a Kadee 740 coupler. This strategy ensured that tight curves would not bind the coupler.

The original coupler assembly

A Kadee 740 coupler was mounted on the original coupler pivot, as shown in the Figure below. The brass screw heads were ground down to provide clearance with the tender frame.

Modified coupler assembly for a Kadee 740 coupler

Additional Dead-Rail Electronics

The added dead-rail electronics include the charging plug, the ON/OFF/Charging plug, a smaller speaker, and the antenna mount.

Charging plug (left) and ON/OFF/Charge switch (right) mounting
Antenna mounting location. The antenna is a  Linx ANT-916-CW-RCS discussed in this blog.

The original speaker was far too large to provide clearance for the additional battery, DCC-compatible RF receiver, and other electrical components needed for the dead-rail installation. So a 16mm x 35mm speaker was placed in the bottom of the original speaker’s cavity, and UV glue holds the speaker in place.

The original speaker. It is far too large to accommodate the additional dead-rail components: battery, DCC-compatible RF receiver, ON/OFF/Charging switch and charging plug.
Candidate speaker. The actual 16mm x 35mm speaker was even smaller and mounted into the bottom of the original speaker cavity.

Final Demonstration

With the locomotive reassembled, it’s time to test it out! If your locomotive has a smoke unit(s), always ensure sufficient smoke fluid is loaded. Even if you don’t intentionally turn on the smoke unit – sometimes it’s unexpectedly activated.

Initial demonstration

General Battery Issues

Introduction

One of the most vexing challenges for me when doing dead-rail conversions on O scale steam locomotives is what battery to select. As nearly as I can determine, lithium polymer (LiPo, see LiPo Wikipedia) batteries are the almost-universal choice among dead-railers. So, the choice of battery technology was not much in question for me, but the battery voltage and size is still a choice to be made. I’ll deal with each of these in turn.

Battery Configurations

I’m not sure how I fell into the 14.8V “camp” for LiPo batteries on O scale dead-rail conversions. Maybe it’s because CVP pushes them for their Airwire products (CVP Airwire). I think CVP has valid admonitions about using higher voltages in regards to radio control range performance and cooler operation (see for instance CVP G3 Decoder User Guide, page 12). And, and almost all of the O scale operating modes (2 rail DC, three rail AC, TMCC, DCS) seem to have 24V or so maximum operating voltage, which is getting close to damage threshold for some radio receivers such as the CVP Airwire receivers. So, would 11.1V (3 LiPi cells in series, “3S” as discussed later) work? Probably just fine in most cases. The plus for 14.8V LiPo is that vendors offer a variety of battery physical and power configurations at 14.8V, which I’ll address next.

There is probably a good deal of lore and religion surrounding the specifics of which brand and configuration of LiPo battery to choose for dead-rail. I’m going to try to stick with what I have tried, not what might theoretically be “better” or “worse.”

Let me start with the less controversial part of my decision process: configuration. LiPo batteries come in a large variety of sizes and configurations (see for instance this site), but in my personal experience with dead-rail, the LiPo’s seem to have a single cell size roughly that of an AA cell with 3.7V output with a charge capacity of around 2000 to 2600 mAh. The individual cells are connected to achieve a total output voltage of about 14.8V (four connected in series, thus the term “4S”), but what varies is the total charge capacity and its ugly handmaiden – physical size.

This is the bear: We want large charge capacity for longer running times, but we in O scale must fit the batteries in often-tight spaces (at least compared to G scale) such as tenders where we also put radio control receiver boards, sound cards, speakers, etc. Of course, HO scale has even more severe volume constraints, but with approximately one-sixth the mass the locomotives must pull.

Personal experience here: I tried to fit an eight-cell (two rows of four vertically-stacked cells, 2.6″ x 2.8″ x 1.4″, 6000mAh, CVP BATT2) configuration into several O scale tenders, and that battery pack just flat-out would not fit. Even though this configuration was only one cell high, O scale tenders are just not tall enough to fit even one cell oriented vertically – the cells must lie sideways to fit. This cell-length limitation is important to remember for O scale. You might find space in diesel locomotives, but not steam locomotive tenders. These limitations were a big disappointment for me since I wanted to cram a large storage capacity battery pack in the tender and run “forever” (forever being at least four hours).

Sigh… Backing off in size, I have found that 2x2x1 LiPo battery packs will fit in O scale tenders with the individual battery cells running along the length of the tender. See the Figure below (pardon the body parts). You can see that this configuration also comfortably fits the width limitations of O scale tenders.

two_by_two_by_one_battery
Figure 1: 2x2x1, 14.8V battery configuration that fits. For reference, the CVP G3X receiver board between the battery and speaker is approximately 4″ long.

A note of caution: you cannot stack too much on top of this configuration before you lose vertical clearance inside the tender. For instance, I thought this was going to work:

two_by_two_by_one_battery_stack
Figure 2: This didn’t fit!

Stacking the receiver board on top of the battery would be a useful space-saving strategy, but this configuration would not clear vertically in all tenders I tried (Big Boys, Cab Forwards, Challengers, and Alleghenies). The receiver board manufacturers would probably dislike my mounting electronics on top of batteries, even with sufficient clearance.

Battery suppliers

My experience is confined to three battery suppliers of 2x2x1 LiPo battery packs: CVP, Tenergy, and “HJE.” All come with a Protection Circuit Module (PCM) that provides:

  • Overcharge, over-discharge protection
  • Overcurrent protection
  • Short-circuit protection
  • Voltage- and current-balance
  • Temperature protection

Suppliers:

Recent experience

Example of a 1x2x2, 4S1P (4 Series, 1 Parallel) battery configuration (from Tenergy.com) on a dead-rail install of a PS3.0-equipped (w/ DCC operation) MTH Virginian Triplex. This battery configuration reduced the thickness sufficiently to fit alongside the PS3.0 board where the original PS2.0 battery pack was mounted. The PS3.0 replacement board was obtained from Ray’s Electric Trainworks.

More creative 14.8V battery configurations are possible that include one battery-diameter thickness solutions such 1x2x2 (Tenergy.com) with dimensions of 131 x 36 x 23mm (LxWxT), so it’s approximately one battery-diameter thickness, two battery-diameters wide, and two battery lengths long (~5.2″). See the picture above for an example of using this thin configuration in a very tight mounting configuration on an MTH Virginian Triplex with a PS-3.0 board operating in DCC mode. See this blog for more details.