We provide a summary of the ProMini Air transmitter and receiver, and then more detail is provided for those who like to “dig deeper.”
Summary of ProMini Air Transmitters and Receivers for Dead-Rail

- System: ProMini Air (PMA) Transmitters and Receivers
- Transmit and receive in the 902-928MHz North American ISM band or the 869MHz European ISM band. These are common bands used for Dead-Rail.
- Nineteen channels are available: Airwire 0-16, Stanton Cab on channel 17, and European operation on Channel 18.
- If no signal is found on its default channel, the PMA receiver auto-scans all 19 channels
- Acts as a DCC device with a unique address: change settings using “OPS” (PoM) mode on the throttle
- We paid the manufacturer for both FCC and EC certification of the RF module (Ebyte E07-900M10S) used for both the PMA transmitter and receiver
- Has connections for an LCD that provides information about what the PMA is transmitting or receiving
- Requirements:
- Receiver
- DCC decoder: Any DCC decoder should work. We test with the following:
- TCS (WOW501)
- LokSound (4 L, 5 L, 5 XL)
- Zimo (MX696 and MX699)
- MTH PS-3.0 (in DCC mode)
- Battery: We test with 14.7V, but 11.1V should work. Maximum: 20V, but lower voltages reduce RF noise.
- Compatible transmitters:
- ProMini Air transmitter connected to the track output of any DCC throttle or to a WiFi-equipped EX-CommandStation we can provide ($20 extra) for a fully stand-alone transmitter.
- Tam Valley Depot DRS1 transmitter connected to a DCC throttle
- CVP Airwire handheld throttle
- Stanton Cab handheld throttle
- Gwire handheld throttle
- DCC decoder: Any DCC decoder should work. We test with the following:
- Transmitter
- Any DCC throttle or use our NEW stand-alone ProMini Air transmitter/WiFi-equipped EX-CommandStation – nothing else is needed to transmit! Just put it down in a convenient/central location, plug-in power or use a battery, and use your smartphone throttle app (multiple smartphones are OK) to connect to all of your dead-rail locomotives! Our thanks to the DCC-EX.com team.
- Compatible receivers:
- ProMini Air receiver
- Tam Valley Depot DRS1 receivers
- CVP Airwire receivers: G-3, G-4, CONVRTR 15/25/60
- Stanton Cab receivers
- Gwire receivers
- NCE D13DRJ wireless decoder
- Any DCC throttle or use our NEW stand-alone ProMini Air transmitter/WiFi-equipped EX-CommandStation – nothing else is needed to transmit! Just put it down in a convenient/central location, plug-in power or use a battery, and use your smartphone throttle app (multiple smartphones are OK) to connect to all of your dead-rail locomotives! Our thanks to the DCC-EX.com team.
- Receiver
- Why Choose
- Compatible with multiple other dead-rail transmitters and receivers:
- Tam Valley Depot
- CVP Airwire
- Stanton Cab
- Gwire
- Inexpensive
- PMA Rx: $40: price includes a fully-wired amplifier
- PMA Tx: $40: price includes the small board that converts track DCC from a standard DCC throttle to power and 5V DCC signal for the PMA transmitter and an LCD that provides helpful information. If you don’t have a DCC throttle, we can provide a small WiFi-equipped EX-CommandStation for a complete stand-alone transmitter solution using up any WiThrottle-compatible smartphone app (up to 5 users) for $10 extra.
- Less susceptible to supply chain disruptions by using commodity components
- Modular:
- Use best-in-class amplifiers, not some add-on on the receiver board that decreases receiver mounting flexibility. We provide one of the following amplifiers:
- Cytron MD13S: a powerful amplifier (13A) for G-scale and large O-scale locomotives
- DRV8871: a small (1.0″ x 0.8″) amplifier (3.6A) for smaller, lower-power locomotives
- Cytron MD13S: a powerful amplifier (13A) for G-scale and large O-scale locomotives
- Small receiver size (1.1″ x 0.83″) will fit in some smaller-scale locomotives and locate separately from the amplifier
- U.FL connector on the receiver offers numerous antenna options (internal antennas don’t cut it in many applications such as metal-shell locomotives):
- Whip antenna (provided): simple and practical
or more “classical” compact RP-SMA antennas
U.FL extender: re-locate the whip antenna
or to RP-SMA antennas:
U.FL patch antennas: mount to non-metallic surfaces
(compact enough for internal mounts in non-metallic shells!)
- Use best-in-class amplifiers, not some add-on on the receiver board that decreases receiver mounting flexibility. We provide one of the following amplifiers:
- Provides centralized or localized handheld dead-rail control: other solutions only offer localized handheld transmitter control: a severe limitation.
- Uses an FCC/EC-approved transmitter/receiver: The range performance of the ProMini Air significantly exceeds the Tam Valley Depot DRS1 transmitters: open-air performance up to approximately 250 ft with default power settings.
- North American or European operation
- DCC-based: preserves your investment in DCC decoders (connects to PMA receiver) and throttles (connects to PMA transmitter). Let’s face it, DCC decoders are standardized and produce beautiful sounds, flexible light effects, superb motor control, etc. Other proprietary locomotive control solutions “vendor-lock” you into a single solution that may leave you stranded if the vendor goes out of business.
- Compatible with multiple other dead-rail transmitters and receivers:
- About that name: We based the “ProMini” part of the name on Sparkfun’s “Pro Mini” MCU we use as part of our modular design philosophy.
- Documentation: We hope the ProMini Air is simple to use. Should you need it, we provide a detailed user manual.
Two critical points:
- Most other Dead-Rail solutions provide localized control using handheld throttles or smartphones. This approach does not scale well for larger or complex layouts better managed by centralized control. “Classical” DCC throttles or the very low-cost WiFi-equipped EX-CommandStation we can provide solve these problems well. The ProMini Air transmitter connects to these well-designed throttles to control numerous dead-rail locomotives by simply replacing track DCC with wireless DCC.
- Numerous Dead-Rail systems are not interoperable with other vendors’ products. We strive to provide as much interoperability as possible with other vendors in the 869MHz (for Europe) and 915MHz (for North America) ISM bands. It’s an “island of compatibility” in Dead-Rail, and the rest is a “tower of Babel” vendor lock.
As of July 2022, Tam Valley Depot is no longer selling its DRS1 series dead-rail products. Our ProMini Air receiver and transmitter are complete and fully-compatible replacements for Tam Valley Depot’s DRS1 transmitters and receivers. Your Tam Valley transmitters and receivers will work with the ProMini Air products. The ProMini Air transmitters and receivers are compatible with CVP Airwire and Stanton Cab dead-rail products.
Details

I was inspired to fully develop a wireless DCC transmitter and receiver by two sources: Martin Sant, who runs the BlueRidge Engineering website, and an article by Mark and Vince Buccini titled “Build Your Own Wireless DCC System” that appeared in the April, June, and August 2014 editions of Garden Railways magazine. These back issues are still available.
The Buccinis showed that it was possible to home-build a wireless DCC system. And Martin became a great collaborator who concretely started me with the initial version of the “ProMini Air” wireless DCC transmitter/receiver hardware and the wireless DCC software for the Pro Mini microcontroller board. I am deeply indebted to these people.
Note: Some photos may show older versions of the ProMini Air. Also, previous versions of the ProMini Air receiver and transmitter used 9000/9001 for their DCC address, which we changed to 9900/9901. Photos and examples may use the now-obsolete addresses.
Feature Comparisons
My goal for offering the ProMini Air receiver/transmitter is to provide those interested in “dead-rail” (radio control, battery power of a model railroad locomotive) inexpensive wireless, DCC compatible transmitters and receivers for radio-control of model railroad locomotives in the US/Canadian 915MHz ISM band – the same band and protocol as used by Tam Valley Depot (TVD), CVP Airwire, NCE/QSI Gwire, and Stanton Cab. Also, you can operate the ProMini Air transmitter and receiver in the European ISM band at 869.85MHz, and we have verified interoperability with Tam Valley Depot European DRS1 transmitters and receivers.
A note about channels: modern CVP Airwire transmitters and receivers can all operate in the Airwire channels designated 0-16 using current Anaren AIR transceiver chips. Older wireless transmitters and receivers from Tam Valley Depot and Stanton Cab used the Linx ES series transmitter or receiver chip that only operated at 916.48MHz with slightly different specialized radio settings from the Airwire channels. I call this channel 17. In most but not all cases, these Channel 17 devices are interoperable with Airwire channel 16 @ 916.36MHz. Also, European versions of these older transmitters and receivers operated on 869.85MHz, and I call this Channel 18. Here’s my unofficial Table of channels and frequencies.
Channel | Frequency (MHz) | Comments |
0 | 921.37 | |
1 | 919.87 | |
2 | 915.37 | |
3 | 912.37 | |
4 | 909.37 | |
5 | 907.87 | |
6 | 906.37 | |
7 | 903.37 | |
8 | 926.12 | |
9 | 924.62 | |
10 (A) | 923.12 | |
11 (B) | 918.12 | S-Cab alternative frequency |
12 (C) | 916.87 | |
13 (D) | 913.62 | |
14 (E) | 910.87 | |
15 (F) | 904.87 | |
16 (na) | 916.37 | TVD interoperability w/ Ch. 17 |
17 | 916.48 | S-Cab and older Tx/Rx |
18 | 869.85 | European operation |
The “ProMini Air” receiver is compatible with the Tam Valley DRS1 transmitter (Channel 16 or 17), both the CVP AirWire T5000 and T1300 wireless throttles (Channels 0-16), the no longer manufactured NCE GWire CAB (Channels 0-7), and the Stanton Cab Throttle (Channel 17).
The ProMini Air transmitter is compatible with the Tam Valley Depot DRS1 receiver (Channels 0-17, Channel 18(E)), the CVP Airwire CONVRTR receivers (Channels 0-16), the QSI Gwire Receiver (Channels 0-7), the Stanton Cab LXR-DCC receiver (Channel 17), and the NCE D13DRJ wireless decoder (Channel 16 or 17). Of course, the ProMini Air transmitters and receivers are compatible!
The ProMini Air has some features that may be of interest compared to commercial offerings. See the Comparison Tables below.
Name | Airwire Receiver Compatible? | Channels | Power Level Adj | Any DCC Input |
TVD DRS1 Transmitter | No | Ch 17 (or 18(E)) | No | Yes |
Airwire T5000 | Yes | 0-16 | Yes | No |
NCE Gwire Cab | Yes | 0-7 | Yes | No |
S-Cab Throttle | No | 17 | No | No |
ProMini Air Transmitter | Yes | 0-17, 18(E) | Yes | Yes |
In fairness, the manufacturers of the Airwire T5000, the NCE Gwire Cab, and the S-Cab Throttle handheld throttles never intended to interface to standard DCC throttles. But, as Tam Valley Depot recognized, it is advantageous to use any device that supplies DCC to the rails and transmit this DCC wirelessly to DCC-compatible receivers.
A notable limitation of the Tam Valley Depot DRS1 transmitter is that it does not provide DCC “IDLE” packets that the Airwire receivers require unless the original DCC throttle does so (most, if not all, do NOT). Also, the Tam Valley Depot DRS1 transmitter can only broadcast on one channel (near Airwire Channel 16, which I have designated Channel 17 @ 916.48MHz).
Shown in the Table below are the comparisons for wireless DCC receivers.
Name | Channels | DCC Filtering? | Channel Auto Search |
TVD DRS1, MK IV | 0-17, 18(E) | None | Yes |
Airwire CONVRTR | 0-16 | Always On | Yes (Limited) |
QSI Gwire | 0-7 | None | No |
S-Cab LXR receiver | 17 | None | No |
ProMini Air | 0-17, 18(E) | None or On | Yes |
The most notable difference among the receivers is “DCC filtering,” i.e., how the receiver behaves when losing a valid RF DCC signal.
When the TVD DRS1 or QSI Gwire receivers lose a valid RF signal, they output random pulses to the decoder. I have discussed the pros and cons of this in another post.
On the other hand, the Airwire CONVRTR outputs constant-level DC when it loses a valid RF signal or doesn’t receive enough DCC “IDLE” packets. Again, as discussed in another post, the DCC decoder may halt the locomotive dead in its tracks when it receives this constant-level DC, which may or may not be what the user wants.
The Airwire CONVRTR performs “DCC filtering” periodically evaluating whether it’s receiving DCC “IDLE” pulses. So, even if a stream of completely-valid DCC packets are received, but there are few or no “IDLE” packets, the Airwire CONVRTR will become inactive and output constant DC to the decoder.
These characteristics of the Airwire receivers are why Tam Valley DRS1 transmitter will usually NOT work with Airwire CONVRTR receivers because the DRS1 will not insert additional DCC “IDLE” packets! The Tam Valley Depot DRS1 transmitter is a passive participant: if the input DCC throttle doesn’t produce frequent DCC “IDLE” pulses, then the Tam Valley Depot DRS1 will not transmit frequent DCC “IDLE” pulses.
Stanton designed the S-Cab LXR-DCC receiver specifically for the S-Cab Throttle’s intermittent DCC transmissions. Like the Airwire CONVRTR receivers, the LXR outputs a constant DC voltage when a valid RF signal is lost.
Via OPS mode (by default at address 9901), you can reconfigure ProMini Air’s output behavior when a valid RF signal is lost. The first option (CV246 -> 0) selects the output of DCC IDLE messages (which the decoder is “comfortable” with, rather than random pulses that might “confuse” the decoder). The second option (CV246 -> 1) selects the output of constant-level DCC.
This reconfigurability makes the ProMini Air receiver a versatile wireless DCC receiver. The ProMini Air receiver’s RF DCC detection technique is more sophisticated than Airwire’s. The ProMini Air receiver detects how long it’s been since it received ANY valid DCC packet. And, after a preset time interval (which is reconfigurable via OPS mode, changing the CV252 value in 1/4 second multiples), the ProMini Air receiver will output either the DCC “Idle” messages (DCC filtering “off”) or output constant-level DC (DCC filtering “on”). When DCC filtering is “on,” and there is no valid RF signal, the DC level output is reconfigurable via an “OPS” mode setting of CV248 (-> 1 for positive DC, -> 0 for 0V DC) at the ProMini Air’s DCC address.
Once a valid RF signal is received again, the ProMini Air receiver detects this condition. It outputs these valid DCC packets to the “DCC amplifier” that sends “track-level” DCC to the decoder.
Another important feature of wireless DCC receivers is Channel selection and searching.
The TVD DRS1 receiver will “listen” on a fixed Airwire Channel if you set some jumpers. Otherwise, the DRS1 will automatically search the Airwire Channels for a valid RF signal if you do NOT insert the jumpers. This behavior may or may NOT be a good idea if multiple wireless DCC transmitters transmit simultaneously on different Channels. And changing the Channel selection behavior (fixed channel or auto-scan) requires physical access to the receiver to connect or disconnect jumpers.
On startup, the Airwire CONVRTR “listens” for a valid RF signal on its “startup” channel (which is reconfigurable by accessing a CV using the wireless throttle’s “OPS” mode). If the CONVRTR finds no valid RF signal after a given time, the CONVRTR will switch to Channel 0. This behavior is usually a good idea.
Like the Airwire CONVRTR, on startup, the ProMini Air receiver will “listen” for valid RF on its “startup” Channel (default, 0) stored in EEPROM memory. This startup channel is changeable using the transmitting throttle’s “OPS” mode by setting CV255 to 0 through 18 at the ProMini Air transmitter’s DCC Address (default, 9901). Like the TVD DRS1 receiver, if the ProMini Air does not find a valid RF signal on its startup channel, the ProMini Air receiver will then auto-scan Channels 0(A), 18(E), 17(S), 1(A), 2(A), …, 16(A) (in that order) for valid RF signal (A=Airwire channels, E=European channel @869.85MHz, S=S-Cab Channel @ 916.48MHz). This scan sequence guarantees that a wireless DCC transmitter (if one is available) is selected, but only if the ProMini Air does NOT find a valid RF DCC signal on its startup Channel from another wireless DC transmitter.
If the ProMini Air receiver finds no valid RF DCC signal on any Channel on startup, it will select Channel 0 and wait for a valid RF DCC signal. Also, upon reset, the ProMini Air’s Channel search process will be unchanged: trying the “startup” channel stored in EEPROM memory, then try auto-searching Channels, and if all else fails, wait on Channel 0.
So, in summary, we are offering the ProMini Air DCC transmitter and receiver to provide a low-cost alternative with a set of features not entirely found in commercial offerings.
You are provided with a few additional components when buying a ProMini Air receiver or transmitter. In the case of the ProMini Air transmitter, we include a simple “DCC Converter” PCB that converts DCC output to the track into Ground, 5V power, and 5V logic DCC. These outputs supply the ProMini Air transmitter with power and DCC packets to transmit, so no additional power supply is necessary.
For the ProMini Air receiver, we include a low-cost “DCC amplifier” that converts the ProMini Air receiver’s 5V logic DCC back to DCC. In its typical configuration, the onboard DCC decoder would pick up from the track (again, discussed in detail below). The ProMini Air receiver can be powered directly from the battery or a small external 5V power supply.
This modularity keeps costs down, allows for easy replacement of components rather than the entire assembly, and enables the use of commodity components less susceptible to supply-chain disruptions.


And, you will need an antenna of your choosing! I love antennas, but your antenna requirements are too diverse to offer a “one size fits all” antenna solution. We provide an FCC/IC-approved Anaren “whip” antenna that connects to the U.FL connector on a 10-pin transceiver daughterboard. This antenna should work well for most transmitter applications and is FCC/IC approved for “intentional radiators.”
For the ProMini Air receiver, some can use the small whip antenna without modification; others will need to run an antenna connecting cable to a small, externally-mounted antenna. We discuss several excellent antenna options below.
Documentation
The definitive source of information for the ProMini Air transmitter and receiver is available here.
Integration
To complete the integration of the ProMini Air receiver (Rx) or transmitter (Tx), you must establish several connections.
Overview of Connections
For the newest PMA Tx, you simply connect either track DCC from a DCC throttle or just power if you use the PMA transmitter with our WiFi-enabled EX-CommandStation. For the newest PMA Rx, you connect a battery to power the PMA Rx and connect the PMA Rx’s DCC output to your decoder.
The connections shown below are for earlier versions of the ProMini Air transmitter and receiver.
See the picture below for an overview of the connections to and from the ProMini Air. Which connections you use depends on whether the ProMini Air will act as a receiver (Rx) or a transmitter (Tx). THERE IS NO PROTECTION AGAINST INCORRECT BATTERY OR EXTERNAL POWER CONNECTIONS!!! You will destroy the ProMini Air immediately if you reverse the GROUND and POSITIVE POWER SUPPLY connection!


The Anaren and Ebyte transceiver daughterboards have a versatile
U.FL plug for antenna connections. You can plug in either the
Anaren whip antenna we provide or a U.FL-to-SMA or U.FL-to-RP-SMA
cable that screws into a remotely-mounted antenna. Also, a two-pin
output provides Ground and the DCC input to (Tx) or output from
(Rx) the RF transceiver board, serving as signals to an oscilloscope for
waveform review. See the figure below for details
on these connections.

The ProMini Air has several connections that provide AVR programmer, I2C display outputs, and 5V logic DCC inputs or outputs. See the photo below.

We will break down these connections for the ProMini Air receiver and transmitter in the following two sections.
Receiver Connections
Several options exist for providing power, starting with the ProMini Air configured as a receiver (Rx). The first option is to use external battery power and jumper the +5V and +5V (Battery) pins to use the onboard 5V regulator to provide board +5V supply.

Since you may not like the heat generated by the onboard 5V regulator when you supply power with external battery power and install the jumper, as an alternative, you may use an external +5V power supply, as shown below, where the external power supply provides Ground and +5V. Of course, you do NOT install the jumper.


The ProMini Air receiver must connect to an external DCC amplifier that converts the 5V logic DCC from the ProMini Air receiver to DCC A/B that a DCC decoder requires. This DCC amplifier uses battery power and the inputs from the ProMini Air receiver to provide the power and DCC messages, coded as a bipolar DCC waveform, to the decoder for both power and DCC messages. These “DCC amplifiers” are usually medium to large amperage amplifiers that accept pulse width modulation (PWM) input to provide precision output control for electric motors. The maximum PWM frequency of these amplifiers is usually high enough (> 20kHz) to reproduce DCC packets accurately.
Depending on the particulars of your installation, the author will provide an appropriate DCC amplifier as part of your PMA Rx purchase.

As shown below, some DCC amplifiers have specialized connector configurations for a GROVE-compliant amplifier.

Integration of the ProMini Air Receiver into a Locomotive
Of course, the real purpose of the ProMini Air receiver is to integrate it into a locomotive for wireless DCC control using an onboard battery as power. An excellent high-power (13A continuous) DCC amplifier may be purchased here, as shown below. This Cytron MD13S amplifier is the one we provide with the ProMini Air receiver unless determined otherwise for size constraints. You can successfully use more expensive high-amperage amplifiers (about $30 US as of 2020) found at Pololu here or here. These amplifiers are smaller (0.8″ x 1.3″) than the Cytron.


Transmitter Connections
Let’s turn the ProMini Air used as a transmitter (Tx) of DCC messages from any DCC-compatible throttle.
The photo below shows the connections between an interface board that takes throttle DCC A/B inputs (“track” DCC) and rectifies these inputs to provide Ground and +5V power supply output. This “DCC Converter” PCB also “taps off” the DCC A input and converts it to a 5V logic DCC output suitable for the ProMini Air transmitter. These outputs provide the ProMini Air transmitter with Ground, +5V power, and 5V logic DCC input.
We provide the “DCC Converter” PCB as part of your PMA Tx purchase.


The user can change the ProMini Air transmitter’s Channel (Airwire channels 0-16, S-Cab channel 17, and EU channel 18) and Power Level (0-10) by setting the DCC throttle’s address to that of the ProMini Air transmitter’s (9900 by default). Then, using the throttle’s OPS mode, change the value of a configuration variable (CV255 for Channel: 0-16, and CV254 for Power Level: 0-10), exit OPS mode, and change the throttle back to the locomotive’s DCC address.
Receiver/Transmitter Antenna Connections
For the ProMini Air transmitter, we strongly urge you to use the FCC/IC-approved Anaren “whip” antenna supplied with the transceiver that is surface-mounted to a 10-pin interface daughterboard. This whip antenna/transceiver combination is FCC/IC-approved as an “intentional radiator.” You can purchase antennas for the ProMini Air transmitter online from many sites for experimentation purposes. For fixed installations of the ProMini Air transmitter, we suggest reputable products from Linx, such as their SMA one-half wave antennas with an internal counterpoise. You can find these antennas at Digi-Key, e.g., ANT-916-OC-LG-SMA ($10.55) and ANT-916-CW-HWR-SMA ($12.85). The former antenna has a slightly better gain (2.2dBi versus 1.2dBi) but is somewhat longer (6.76″ versus 4.75″).

For the ProMini Air receiver or the ProMini Air transmitter, where a small, remotely-mounted antenna is needed, we again recommend Linx antennas such as the ANT-916-CW-RCS or ANT-916-CW-RAH.


Diagnostic Outputs
The ProMini Air receiver or transmitter provides diagnostic outputs that are not required for operation but are helpful for troubleshooting or just for fun:
- You can monitor the transceiver’s output (in Rx mode) or input (in Tx mode) on the output DIP pins described above.
- “I2C” outputs can drive inexpensive two rows 16 columns I2C LCD.



The ProMini Air software automatically searches for a valid LCD I2C address on boot-up. Please make sure you connect only ONE display to the ProMini Air.
You can also change the ProMini Air’s DCC address using the throttle’s “OPS” mode. For the transmitter, you use the DCC throttle that connects to the ProMini Air transmitter (by default at DCC address 9900 (previously 9000)). For the ProMini Air receiver, you use the wireless DCC throttle transmitting to the ProMini Air receiver (by default at DCC address 9901 (previously 9001)). The EEPROM permanently stores the changed address, but this new address is not operative until you power cycle the ProMini Air.
Configuration and Testing
We default-configured the ProMini Air receiver and transmitter to operate on Airwire Channel 0. This default can be changed by setting the DCC address to 9901(Rx)/9900(Tx) (the default, which can be changed as described in the Users Manual) to access the ProMini Air transmitter and in OPS or Programming-on-the-Main (POM) mode setting CV255 to the desired channel. Valid channels are 0-17 for North American operation or Channel 18 (869.85MHz) for European operation.
Suppose the ProMini Air receiver fails to detect valid DCC packets on its default channel during startup. In that case, it will cycle through all Airwire Channels to find a Channel producing valid DCC packets. If this cycling fails to find a valid Channel, the ProMini Air receiver will change to Channel 0 and wait for a valid RF DCC signal. This channel change is not permanent, and ProMini Air will revert to its default channel on a restart.
Several other configuration options are available through “OPS” mode programming, as described in the ProMini Air Users Manual.
We strongly urge the user to test the ProMini Air before the final deployment. At the least, an inexpensive I2C LCD can be purchased here or here (and numerous other locations) to gain some insight into the ProMini Air’s state. This display is particularly beneficial when using the ProMini Air as a transmitter.
Examples of Testing (Advanced)
This section is only for the advanced or adventurous. In the examples below, the Yellow waveform is the signal from/to the RF transceiver for Rx/Tx. The blue waveform is one channel of the resulting DCC (Rx) sent to the decoder or DCC received from the throttle via wireless transmission (Tx).
Receiver Testing
The photo below shows the ProMini Air operating as a receiver. Of course, an RF transmitter wirelessly sends DCC packets. This transmitter may be a dedicated wireless DCC throttle, such as the Airwire Tx5000. Or, it may be a transmitter that converts standard “track DCC” to wireless DCC, such as the Tam Valley Depot DRS1 transmitter or the ProMini Air used as a transmitter (as discussed in the next section)!
On the LCD, “My Ad: #” is the DCC address of the ProMini Air itself. The “(L)” means “long” address. Displayed on the second line is the Channel number and whether DCC “filtering” is “off” (Filter: 0, as shown) or “on” (Filter: 1).

The photo below shows the oscilloscope waveforms with no valid RF DCC signal. With filtering off (Filter: 0), the DCC sent to the decoder reproduces the random pulses generated by the receiver.

These two photos show the ProMini Air’s transceiver and DCC amplifier output when valid RF DCC is received and no valid RF DCC is received. DCC filtering is off, so the PMA outputs DCC Idle messages. The Tam Valley Depot and Gwire receivers simply reproduce the random pulses received by the transceiver.



The user can reconfigure the ProMini Air receiver using the throttle’s “OPS” mode. Setting the wireless throttle DCC address to 9901 now shows that the Msg address (“Msg Ad: #”) matches the ProMini Air receiver’s address (“My Add: #”).

Change CV246 to “1” in OPS mode, which will turn “on” the ProMini Air receiver’s DCC filtering.

The display now shows that DCC filtering is “on.”

Exiting OPS mode and changing the throttle to the locomotive’s address shows an updated “Msg Ad: #” with DCC filtering “on.”

Below is the transceiver’s and DCC amplifier’s DCC output when transmitting valid RF DCC.

If we turn off the wireless transmitter/throttle sending RF DCC, now the transceiver outputs random pulses (yellow). Since filtering is “on,” the ProMini Air receiver firmware detects “bad” waveforms that do not appear to represent a valid DCC packet. The ProMini Air receiver then outputs a constant-level signal that causes the DCC amplifier to output a high level on DCC A (blue) and zero Volts on DCC B (not shown). This behavior is similar the that of the Airwire receivers. However, the detection mechanism for Airwire receivers is simply the lack of a sufficient frequency of DCC “IDLE” packets, not an analysis of the transceiver’s pulse train.

Repeating the process of changing the wireless throttle’s DCC address to 9901, going into “OPS” mode, changing CV246 to “0”, exiting “OPS” mode, and changing back to the locomotive’s DCC address will now set DCC filtering to “off.”


So, when we turn off the wireless DCC throttle/transmitter, the DCC amplifier’s output (blue) again displays the DCC IDLE messages output by the ProMini Air receiver.

Transmitter Testing
We now turn our attention to testing when using the ProMini Air as a transmitter.

The display will alternate between showing the ProMini Air transmitter’s DCC address (“My Ad: #”) and the transmitted DCC packet’s DCC address (“Msg Ad: #”). The transmitting Channel (“Ch: #”) and Power Level (“PL: #”) display on the second line.


Below is an oscilloscope trace of the input DCC from the throttle (blue) and the DCC transmitted by the RF transceiver on the ProMini Air transmitter. Since the wireless DCC must keep the Airwire RF receiver “happy” with numerous DCC “IDLE” packets, the ProMini Air transmitter evaluates the incoming DCC from the throttle. When the throttle outputs frequent, redundant DCC packets, the ProMIni Air transmitter occasionally inserts DCC “IDLE” packets instead of one of the redundant packets. So, the input DCC and the transmitted DCC will not precisely match. Since DCC throttles send many redundant DCC packets, the locomotive will receive sufficient DCC packets to operate correctly.


You can reconfigure the ProMini Air transmitter by setting the throttle’s DCC address to 9900 (which can be changed) and then going into the “OPS” mode to set configuration variables (CV) to new values.

Once we have changed the throttle’s DCC address to 9900, note that the message address (“Msg Ad: #”) now matches ProMini Air’s address (“My Ad: #”).

For example, while in OPS mode, changing CV246 to “6” will reset the ProMini Air transmitter’s Power Level to 6, as indicated by the display shown below.

After exiting the “OPS” mode, we see that the display reflects the new Power Level (“PL: #”).


Changing the throttle’s DCC address back to the locomotive’s address will sometimes show “Msg Ad: 255(S)”, which means that the ProMini Air transmitter sent out a DCC “IDLE” packet to make the Airwire receiver “happy.”

A display refresh (every 4 seconds) will most likely display the locomotive’s DCC address, 1654. The “(L)” means “long” address.

Conclusion and Further Information
The ProMini Air is an inexpensive and fun introduction to wireless DCC control of your model railroad locomotive!
Please contact the author on this site to purchase the ProMini Air receiver or transmitter. The cost for the ProMini Air transmitter or receiver (with their additional DCC Converter or DCC amplifier and wiring harness) is only $39.99 + shipping. For the ProMini Air transmitter, if you don’t have a DCC throttle you want to use, you can add a WiFi-equipped EX-CommandStation for a completely stand-alone dead-rail transmitter for $10 extra. You can see my offerings on eBay by searching for “ProMiniAir.”